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Abstract. In recent years, large vision and language models (VLMs)
have been investigated in autonomous driving to address long-standing
issues including, reasoning, generalization, and long-tail scenarios. How-
ever, efficient integration of VLMs into autonomous driving framework
remains an open question. In this paper, we present VLP, a novel Vision-
Language-Planning framework that exploits large vision language mod-
els to bridge the gap between linguistic understanding and autonomous
driving. VLP is a training only approach that distills the power of VLMs
into end-to-end modular autonomous driving by presenting a contrastive
learning objective. Extensive experiments on both open loop and closed
loop tasks verify the utility of VLP. In particular, VLP achieves state-
of-the-art end-to-end planning performance on the nuScenes dataset by
achieving 35.9% and 60.5% reduction in terms of average L2 error and
collision rates, respectively, compared to the previous best method.
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1 Background

Autonomous driving systems aims safe motion planning through effective scene
understanding and reasoning. Despite advancements in vision-based autonomous
driving systems, these methods often struggle with reasoning, generalization, and
handling long-tail scenarios, which limits their deployment in real-world environ-
ments. The emerging progress on multimodel large language models (MLLM) [2]
have shown that common sense and reasoning capability of these models can
help addressing the challenges in embodied AI domain. While most of these
methods have primarily targeted the robotics domain, there has been limited
work on utilizing embodied language models (LMs) for autonomous driving
tasks [4,8,11113|. Notably, DiLu |12] and GPT-Driver [8] introduce GPT-based
driver agents for closed-loop simulation tasks. In [11], an open-loop driving com-
mentator is proposed that combines vision and low-level driving actions with
language to interpret and reason about driving behaviors. However, it still re-
mains unclear how can these approaches be efficiently distilled and leveraged in
enhancing the performance of modular end-to-end autonomous driving stacks.
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To address these challenges, we propose a novel Vision Language Planning
(VLP) framework that efficiently distills the power of vision language models
into the autonomous driving through a contrastive learning objective |9].

Our VLP framework, illustrated in Figure introduces two key compo-
nents: the Agent-centric Learning Paradigm (ALP) and the Self-driving-car-
centric Learning Paradigm (SLP). ALP enhances the local semantic representa-
tion and reasoning capabilities of the Bird’s Eye View (BEV) feature map, which
serves as the source memory in the driving system, by aligning it with human-
like reasoning processes. SLP refines the planning process by aligning planning
queries with the goals and status of the self-driving car, using the common-sense
reasoning embedded in the language model to guide decision-making. Together,
these components improve the system’s ability to understand complex driving
environments and make safer, more informed decisions.

We conduct extensive experiments on both open loop and closed loop envi-
ronments to show the efficacy of VLP in substantially improving performance
of autonomous driving systems. Specifically, VLP achieves state-of-the-art end-
to-end open loop planning performance on the nuScenes dataset by achieving
35.9% and 60.5% reduction in terms of average L2 error and collision rates, re-
spectively, compared to the previous best method. Similarly it also outperforms
the counterpart methods in CARLA closed loop evaluation.

2 Methodology

In this section, we will briefly describe our VLP methodology illustrated in Fig.
[[] The VLP model consists of two key components: the Agent-centric Learn-
ing Paradigm (ALP) and the Self-driving-car-centric Learning Paradigm (SLP).
These components focus on refining local details in the BEV (bird’s-eye view)
source memory and guiding the planning process of the self-driving car, respec-
tively.

In particular, ALP first aligns the ground-truth area of each agent, namely
ego-car, foreground and background objects, with the produced BEV map, and
crop the regions of interest. We utilize the 3D bounding box to crop the ego-
car and foreground (FG) object area, and panoptic scene mask to segment the
lane area. Subsequently, we perform a pooling operation on the obtained local
BEV region, to generate a single feature representation for the corresponding
agent. After pooling, the local agent features in each sample along the batch are
concatenated to formulate an Agent-wise BEV feature tensor. To ensure that lo-
cal BEV features express the desired information, we conduct a BEV-expectation
alignment process by leveraging LM and contrastive learning. We precisely de-
fine the perceptual information expected from the corresponding agent, such
as agent labels, bounding boxes, and future trajectories. These driving-related
ground-truth information, which should also be embedded in the local BEV fea-
ture is formulated into a prompt as illustrated in Fig. [l The description is then
passed to the VLM, to generate the corresponding agent expectation feature.
We apply an MLP layer to adapt the expectation feature to the BEV feature
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space. Then, the agent expectation features are concatenated along the batch to
generate an Agent-wise text feature tensor. Finally, we perform a constrastive
learning loss between Agent-wise BEV and Text features for alignment. In
SLP, we follow a similar process but focus exclusively on the ego-vehicle. We
note that VLP is only active during training, ensuring no additional parameters
or computations are introduced during inference.

Fig. 1: The overview of proposed vision language planning (VLP) framework. VLP
consists of ALP and SLP components which enhances autonomous driving from self-
driving BEV-reasoning and self-driving decision-making aspects.
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3 Experiment and Results

We conduct experiments on both open loop and closed loop environments. For
open loop experiments, we use nuScenes dataset . The nuScenes contains
1000 driving scenes from Boston and Singapore, two cities that are known for
their dense traffic and highly challenging driving conditions. For closed-loop ex-
periments, we use Bench2Drive @, the first benchmark designed to evaluate
the diverse capabilities of end-to-end autonomous driving systems in a closed-
loop setting. Specifically, we assess the performance of our models within the
Bench2Drive closed-loop evaluation environment, which is based on the CARLA
Leaderboard V2 . This environment extends the original 39 scenarios up to 44
more challenging scenarios and modifies the official routes by condensing them
into shorter routes, each featuring a single scenario.

3.1 Open-loop Planning Performance

In Tab. [I} we present a series of comparative experiments that showcase the
performance of our open-loop planning in comparison to the baseline UniAD |5
and VAD [7] models. As can be seen in rows 2 and 5 of the table, the integration
of just SLP leads to noticeable reductions in both the L2 error and collision
rates for all the baseline models. Moving down the table, rows 3 to 6 demon-
strate that the inclusion of both VLP components (SLP and ALP together)
consistently yields further improvements in these planning metrics. In particu-
lar, VLP-UniAD shows a 28.1% and 48.4% reduction in terms of average L2 error
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L2 (m) | Col. Rate (%) |
ID | Model SLP ALP 1s 2s 3s ‘Avg. s 2s 3s ‘Avg.
1 |UniAD [5] 0.48 0.96 1.65[1.03|0.05 0.17 0.71]0.31
2 |VLP-UniAD| v 0.43 0.86 1.47|0.92(0.03 0.15 0.48|0.22
3 |VLP-UniAD| v v |0.36 0.68 1.19(0.74/0.03 0.12 0.32|0.16
4 |VAD |7| 0.46 0.76 1.12|0.78]0.21 0.35 0.58|0.38
5 |VLP-VAD v 0.26 0.47 0.78/0.50(0.12 0.17 0.42|0.23
6 |VLP-VAD v. v |0.300.53 0.84|0.55/0.01 0.07 0.38/0.15

Table 1: Open-loop planning performance. VLP achieves significant end-to-end
planning performance improvement over counterpart vision only UniAD and VAD
methods on the nuScenes validation dataset [1].

and collision rate, respectively, compared to baseline UniAD. Similarly, in com-
parison with VAD, VLP-VAD achieves 35.9% and 60.5% reduction for average
L2 error and collision rate, respectively. These significant results underscore the
effectiveness of both SLP and ALP, as well as their adaptability across various
autonomous driving system configurations.

3.2 Closed-loop Benchmark

The closed-loop evaluation results are collected on the 110 routes (each around
150 meters in length and contains a single specific scenario) in Bench2Drive
benchmark to showcase the closed-loop performance in comparison to the base-
line VAD [7] tiny model. The results are shown in Table [2| It can be seen that
the VLMs plugin approach in training phase can improve the closed-loop per-
formance in both driving score (8%) and route completion (13%).

Method Bench2Drive Evaluation
Driving Score T Route Completion 1

VAD-tiny 31.34 56.64%

VAD-tiny-VLP 33.84 64.20%

Table 2: Closed-loop simulation results on Bench2Drive (110 routes). VLP significantly
outperforms VAD in terms of both driving score and route completion.

4 Discussion and Conclusion

To conclude, we have introduced a novel Vision Language Planning (VLP) ap-
proach to enhance autonomous driving systems. VLP employs a constrastive
learning objective to distill power of vision language models into autonomous
driving without incurring any extra cost in runtime. Through extensive exper-
iments on both open-loop and closed-loop environments, we have shown that
VLP delivers SOTA end-to-end planning performance.
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